
The quantum J1–J1'–J2 spin-1/2 Heisenberg model: influence of the interchain coupling on

the ground-state magnetic ordering in two dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 255251

(http://iopscience.iop.org/0953-8984/20/25/255251)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 13:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/25
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 255251 (6pp) doi:10.1088/0953-8984/20/25/255251

The quantum J1–J ′
1–J2 spin-1/2

Heisenberg model: influence of the
interchain coupling on the ground-state
magnetic ordering in two dimensions
R F Bishop1,2, P H Y Li1,2, R Darradi3 and J Richter3

1 School of Physics and Astronomy, Schuster Building, The University of Manchester,
Manchester M13 9PL, UK
2 School of Physics and Astronomy, University of Minnesota, 116 Church Street SE,
Minneapolis, MN 55455, USA
3 Institut für Theoretische Physik, Universität Magdeburg, 39016 Magdeburg, Germany

Received 7 March 2008, in final form 18 April 2008
Published 28 May 2008
Online at stacks.iop.org/JPhysCM/20/255251

Abstract
We study the phase diagram of the two-dimensional (2D) J1–J ′

1–J2 spin-1/2 Heisenberg model
by means of the coupled cluster method. The effect of the coupling J ′

1 on the Néel and stripe
states is investigated. We find that the quantum critical points for the Néel and stripe phases
increase as the coupling strength J ′

1 is increased, and an intermediate phase emerges above the
region at J ′

1 ≈ 0.6 when J1 = 1. We find indications for a quantum triple point at
J ′

1 ≈ 0.60 ± 0.03, J2 ≈ 0.33 ± 0.02 for J1 = 1.

1. Introduction

The spin-1/2 Heisenberg antiferromagnet has been much
studied in recent years due to the discovery or successful
syntheses of such new magnetic materials as the layered-
oxide high-temperature superconductors. Also of much
interest has been the interplay between frustration and
quantum fluctuations in two-dimensional (2D) quantum spin
systems that can lead to quantum phase transitions between
magnetically ordered semiclassical and novel quantum
paramagnetic ground-state phases, see, e.g. [1, 2].

For example, the frustrated 2D antiferromagnetic J1–
J2 model with nearest-neighbour (J1) and next-nearest-
neighbour (J2) bonds has attracted much attention both
theoretically (see, e.g. [3–10] and references cited therein) and
experimentally [11, 12]. It is now well accepted that the model
exhibits two phases displaying semiclassical magnetic long-
range order (LRO) at small and at large J2, separated by an
intermediate quantum paramagnetic phase without magnetic
LRO in the parameter region Jc1 < J2 < Jc2 , where Jc1 ≈
0.4J1 and Jc2 ≈ 0.6J1. The ground state (gs) for J2 < Jc1

exhibits Néel magnetic LRO, whereas for J2 > Jc2 it exhibits
collinear stripe LRO.

In real systems deviations from the ideal 2D J1–J2 model
such as spin anisotropies [8, 13] or interlayer coupling may be

relevant [10]. In addition, a three-dimensional (3D) version of
the J1–J2 model [14] has also been considered.

An interesting generalization of the pure J1–J2 model has
been introduced recently by Nersesyan and Tsvelik [15]. They
consider a spatially anisotropic spin-1/2 2D J1–J ′

1–J2 model,
where the nearest-neighbour bonds have different strengths
J1 and J ′

1 in the x and y directions. This model has been
further studied by other groups using the exact diagonalization
(ED) of small lattice samples of N � 36 sites [16], and the
continuum limit of the model [17]. Both groups support the
prediction of the resonating valence-bond state by Nersesyan
and Tsvelik [15] for J2 = 0.5J ′

1 � J1, and the limit of small
interchain coupling extends along a curve nearly coincident
with the line where the energy is maximum. The model has
also been studied by Moukouri [18] using a two-step density-
matrix renormalization group approach.

Our aim here is to further the study of this model by
using the coupled cluster method (CCM). The CCM (see,
e.g. [19–21] and references cited therein) is one of the most
powerful and universally applicable techniques of quantum
many-body theory. It has been applied successfully to calculate
with high accuracy the ground-and excited-state properties of
many lattice quantum spin systems (see, e.g. [10, 21–26] and
references cited therein). A particularly important result from
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Figure 1. (a) J1–J ′
1–J2 model; —J1; – – – J ′

1; · − · J2; (b) Néel state, (c) stripe state—columnar and (d) stripe state—row. Arrows in (b)–(d)
represent spins situated on the sites of the square lattice (indicated by • in (a)).

our calculations is the indicated existence of a quantum triple
point (QTP) at nonzero (positive) values of J1, J ′

1 and J2.

2. The model

The J1–J ′
1–J2 model is a spin-1/2 Heisenberg model on a

square lattice with three kinds of exchange bonds, with strength
J1 along the row direction, J ′

1 along the column direction, and
J2 along the diagonals, as shown in figure 1. All exchanges are
assumed positive here, and we set J1 = 1. The Hamiltonian of
the model is described by

H = J1

∑

i,l

si,l · si+1,l + J ′
1

∑

i,l

si,l · si,l+1

+ J2

∑

i,l

(si,l · si+1,l+1 + si+1,l · si,l+1), (1)

where the index (i, l) labels the x (row) and y (column)
components of the lattice sites.

This model has two types of classical gs, namely, the
Néel (π, π ) state and stripe states (columnar stripe (π, 0) and
row stripe (0, π )), the spin orientations of which are shown
in figures 1(b)–(d) respectively. There is clearly a symmetry
under the interchange of rows and columns, J1 � J ′

1, which
implies that we need only consider the range of parameters
with J ′

1 < J1. The ground-state (gs) energies of the various
classical states are given by

Ecl
Néel

N
= 1

4
(−J1 − J ′

1 + 2J2),

Ecl
columnar

N
= 1

4
(−J1 + J ′

1 − 2J2),

Ecl
row

N
= 1

4
(J1 − J ′

1 − 2J2).

(2)

We take J1 = 1 and J ′
1 < 1. Clearly, from (2), the classical

gs is then either the Néel state (if J ′
1 > 2J2) or the columnar

stripe state (if J ′
1 < 2J2). Hence, the (first-order) classical

phase transition between the Néel and columnar stripe states
occurs at J c

2 = 1
2 J ′

1, ∀J1 > J ′
1.

3. The coupled cluster method

The CCM formalism is now briefly described (and see [19–26]
for further details). The starting point for the CCM calculation
is to select a normalized model state |�〉. It is often convenient
to take the classical ground state as the model state for spin

Table 1. Number of fundamental LSUBn configurations (� f.c.) for
the Néel and stripe states of the spin-1/2 J1–J ′

1–J2 model.

� f.c.
Method Néel stripe

LSUB2 2 1
LSUB4 13 9
LSUB6 146 106
LSUB8 2 555 1 922
LSUB10 59 124 45 825

systems. Hence our model states are the Néel state and the
columnar stripe state. In order to treat each site identically,
we perform a mathematical rotation of the local axes of the
spins such that all spins in the reference state align along
the negative z-axis. The Schrödinger ground-state ket and
bra CCM equations are H |�〉 = E |�〉 and 〈�̃|H = E〈�̃|
respectively. The CCM employs the exponential ansatz, |�〉 =
eS|�〉 and 〈�̃| = 〈�|S̃e−S . The correlation operator S is
expressed as S = ∑

I �=0 SI C+
I and its counterpart is S̃ = 1 +∑

I �=0 S̃I C−
I . The multi-spin creation operators C+

I ≡ (C−
I )†,

with C+
0 ≡ 1, are written as C+

I ≡ s+
j1

s+
j2

· · · s+
jn

. The gs energy
is E = 〈�|e−S H eS|�〉; and the staggered magnetization M in
the rotated spin coordinates is M ≡ − 1

N 〈�̃| ∑N
j=1 sz

j |�〉.
The ket- and bra-state correlation coefficients (SI , S̃I ) are

calculated by requiring the expectation value H̄ ≡ 〈�̃|H |�〉
to be a minimum with respect to all parameters (SI , S̃I ) such
that 〈�|C−

I e−S H eS|�〉 = 0 and 〈�|S̃(e−S H eS−E0)C
+
I |�〉 =

0 ; ∀I �= 0.

4. Approximation scheme

The CCM formalism is exact if all spin configurations are
included in the S and S̃ operators. In practice, however,
truncations are needed. As in much of our previous work, we
employ here the localized LSUBn scheme [6, 10, 21–26], in
which all possible multi-spin-flip correlations over different
locales on the lattice defined by n or fewer contiguous
lattice sites are retained. The numbers of such fundamental
configurations (namely, those that are distinct under the
symmetries of the Hamiltonian and of the model state |�〉) that
are retained for the Néel and stripe states of the current model
in various LSUBn approximations are shown in table 1. In
order to solve the corresponding coupled sets of CCM bra- and
ket-equations we use parallel computing [27].
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Figure 2. Extrapolated CCM LSUBn results for the gs energy per
spin, E/N , for J ′

1 = 0.2, 0.4, 0.6, 0.8, 1.0, using the Néel and stripe
states of the s = 1/2 J1–J ′

1–J2 model. The LSUBn results are
extrapolated in the limit n → ∞ using the set n = {4, 6, 8, 10}.
The NN exchange coupling J1 = 1.

(This figure is in colour only in the electronic version)

5. Extrapolation scheme

In practice one needs to extrapolate the raw LSUBn data to the
n → ∞ limit. Based on previous experience [10, 23, 26] we
use the following empirical scaling laws for the extrapolations
of the gs energy per spin,

E/N = a0 + a1n−2 + a2n−4, (3)

and the staggered magnetization of frustrated models,

M = b0 + b1n−ν , (4)

where the exponent ν is a fitting parameter. In order to fit to
any fitting formula that contains n unknown parameters, one
desirable rule is to have at least (n + 1) data points (n + 1
rule) to obtain a robust and stable fit. In our results below the
LSUBn results for n = {4, 6, 8, 10} are extrapolated.

6. Results

In figure 2 we show the gs energy per spin as a function
of J2. For each value of J ′

1 two curves are shown, one
(for smaller values of J2) using the Néel state, and the other
(for larger values of J2) using the stripe state as the CCM
model state. Both sets of curves have the natural termination
points [6, 21, 22] shown. For J ′

1 � 0.6 the two curves for a
given value of J ′

1 cross (or, in the limit, meet) very smoothly
near their maxima, at a value of J2 slightly larger than the
classical transition point of 0.5J ′

1. This behaviour is indicative
of a second-order quantum phase transition, by contrast with
the first-order classical transition from (2). For J ′

1 � 0.6
the curves no longer cross at a physical value (namely, where
the calculated staggered magnetization is positive), indicating
the opening up of an intermediate quantum phase between the
semiclassical Néel and stripe phases.

In figure 3(a) we show the equivalent staggered
magnetization, M , for the Néel state, extrapolated using (4).

0 0.2

M

J 2

(a)

J 1’=0.6
J 1’=0.65

J 1’=0.7

M

J 2

(b)

J 1’=0.6
J 1’=0.65

J 1’=0.7

0

0.1

0.2

0

0.1

0.2

0 0.2

Figure 3. Extrapolated CCM LSUBn results for the gs staggered
magnetization, M , for J ′

1 = 0.6, 0.65, 0.7 for the Néel state of the
s = 1/2 J1–J ′

1–J2 model. (a) Results using (4), M = b0 + b1n−ν .
(b) Results using (5), M = c0 + n−0.5(c1 + c2n−1). The LSUBn
results are extrapolated in the limit n → ∞ using the set
n = {4, 6, 8, 10}. The NN exchange coupling J1 = 1.

We observe that the extrapolation scheme produces smooth
and physically reasonable results, except for a very narrow
anomalous ‘shoulder’ region near the points where M vanishes
for 0.6 � J ′

1 � 0.75. This critical regime is undoubtedly
difficult to fit with the simple two-term scheme of (4). Our
method for curing this problem and stabilizing the curves is to
make efficient use of the information we obtain in (4) to extract
the exponent ν, and then to use that value to infer the next term
in the series. We find, very gratifyingly, that the value for ν

fitted to (4) turns out to be very close to 0.5 for all values of
J ′

1 and J2 except very close to the critical point. Therefore, we
use the form of (5),

M = c0 + n−0.5(c1 + c2n−1). (5)

The use of (5) now removes the anomalous shoulder, as shown
in figure 3(b). Henceforth, in all of the results we discuss, we
use (5) for the staggered magnetization.

The raw LSUBn data for n = {2, 4, 6, 8, 10} and
n = {6, 8, 10} are also extrapolated. The results for n =
{2, 4, 6, 8, 10} and n = {4, 6, 8, 10} are similar as they both
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Figure 4. The extrapolated CCM LSUBn results for the staggered
magnetization, M , for J ′

1 = 0.2, 0.4, 0.6, 0.8, 1.0 of the
s = 1/2 J1–J ′

1–J2 model. The LSUBn results are extrapolated in the
limit n → ∞ using the set n = {4, 6, 8, 10}. The NN exchange
coupling J1 = 1.

obey the n + 1 rule as mentioned above. This adds credence
to the validity and stability of our results. The extrapolated
curves for n = {6, 8, 10} have a very minor ‘shoulder’ which
is undoubtedly due to using only three data points to fit the
three unknown terms, thus violating the n + 1 rule.

In figure 4 we show our equivalent results for the staggered
magnetization to those in figure 2 for the gs energy. We note
the surprising result that M vanishes for both the quantum Néel
and stripe phases at almost exactly the same critical value of J2,
for a given J ′

1, so long as J ′
1 � 0.6. Conversely, for J ′

1 � 0.6
there exists an intermediate region between the critical points
at which M → 0 for these two phases. The order parameters
of both the Néel and the stripe phases vanish continuously both
below and above the correspondingly indicated quantum triple
point (QTP), as is again typical of second-order transitions. We
note, however, that there exists some evidence from such other
sources as ED calculations for the J1–J2 model (i.e. the present
model with J ′

1 = J1) in two dimensions [5], that the transition
between the stripe and intermediate phases is first-order, while
others [28] have argued it may be close to second-order. We
discuss these points further in section 7 below.

We show in figure 5 the zero-temperature phase diagram
of the 2D spin-1/2 J1–J ′

1–J2 model, as obtained from our
extrapolated results for both the gs energy and the order
parameter. The phase diagram using the extrapolated LSUBn
results based on n = {2, 4, 6, 8, 10} is very similar to that of
figure 5, which again adds credence to the validity and stability
of our results.

Within the high-order CCM that we have used, our results
certainly seem to provide clear and consistent evidence for a
QTP at J ′

1 ≈ 0.6 for J1 = 1. For J ′
1 � 0.6 there exist only the

Néel and stripe phases, with a second-order transition between
them. For J ′

1 � 0.6 there exists an intermediate (magnetically
disordered, i.e. paramagnetic) quantum phase, which requires
further investigation. Although the nature of the intermediate
phase is still under discussion, a valence-bond solid phase
seems to be the most favoured [4, 9]. On the other hand,

Figure 5. The extrapolated CCM LSUBn results for the gs phase
diagram of the s = 1/2 J1–J ′

1–J2 model. The LSUBn results are
extrapolated in the limit n → ∞ using the set n = {4, 6, 8, 10}.
The NN exchange coupling J1 = 1. QTP ≡ quantum triple point.

another possibility for the paramagnetic phase is the resonating
valence-bond (RVB) phase [16].

7. Discussion and conclusions

In conclusion, our most important result is the evidence
presented for a QTP for which our best estimate is J ′

1 ≈
0.60 ± 0.03, J2 ≈ 0.33 ± 0.02 for J1 = 1. Below this
point we predict a second-order phase transition between the
quantum Néel and stripe phases, whereas above it these two
phases are separated by an intermediate phase. Although the
order parameters for the Néel and stripe phases vanish on
the Néel-intermediate and stripe-intermediate phase boundary
lines, respectively, above the QTP, we are unable to conclude
more about the nature of the transitions at those boundaries,
since the present calculations have not addressed at all the
nature of the intermediate phase.

Other calculations on this model [16, 17] differ
predominantly by giving a QTP at J ′

1 = 0 = J2 for J1 = 1. We
believe that the difference arises essentially from the nature of
the alternative methods used. For example, due to the small
size of the lattices used, the ED calculations of [16] might
miss the longer-range correlations that become increasingly
important the nearer one approaches the QTP. By contrast, at
any level of truncation the CCM always incorporates some
long-range correlations through the important exponentiated
parametrization of the wavefunction that lies at the heart of the
method, as described in section 3. Also, the results of Starykh
and Balents [17] are based on an analysis of a continuum
version of the J1–J ′

1–J2 model rather than on the discrete
lattice model itself. This could easily account for our differing
predictions for the position of the QTP.

As we have discussed above (and see figures 4 and 5),
our results indicate that there is a continuous (second-
order) transition below the QTP between the two ordered
semiclassical phases with different broken symmetries. This
is undoubtedly a rather novel and surprising result that has
few precedents, and one that seemingly violates the Landau
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criterion of symmetry change. We note, however, that a
similar scenario has been discussed recently in the related,
but different, context of deconfined quantum criticality, as we
explain more fully below.

Thus, it has been argued recently by other authors [29]
that there also exists a continuous (i.e. second-order) phase
transition for the spin-1/2 pure J1–J2 model on the 2D
square lattice (i.e. our case with J ′

1 = J1) between the
Néel state and what we have called here the intermediate
state, and which those authors identify as a paramagnetic
valence-bond solid (VBS) state. Such direct second-order
quantum phase transitions between two states with different
broken symmetries, and hence characterized by two seemingly
independent order parameters, are difficult to understand
within the standard Ginzburg–Landau critical theory, as we
now discuss.

Thus, the competition between two such distinct kinds of
quantum order associated with different broken symmetries
would lead generically in the Ginzburg–Landau scenario to
only one of three possibilities: (i) a first-order transition
between the two states, (ii) an intermediate region of co-
existence between both phases with both kinds of order present
or (iii) a region of intermediate phase with neither of the
orders of these two phases present. A direct second-order
transition between states of different broken symmetries is only
allowable within the standard Ginzburg–Landau critical theory
if it arises by an accidental fine-tuning of the disparate order
parameters to a multicritical point. Thus, for the spin-1/2 pure
J1–J2 model and its quantum phase transition suggested by
Senthil et al [29], it would require the completely accidental
coincidence (or near coincidence) of the point where the
magnetic order parameter (i.e. the staggered magnetization)
vanishes for the Néel phase with the point where the dimer
order parameter vanishes for the VBS phase. Since each of
these phases has a different broken symmetry (namely, spin-
rotation symmetry for the Néel phase and lattice symmetry
for the VBS phase), one would naively expect both that each
transition is described by its own independent order parameter
(i.e. the staggered magnetization for the Néel phase and the
dimer order parameter for the VBS phase) and that the two
transitions should therefore be independent of each other.

By contrast, the ‘deconfined’ type of quantum phase
transition postulated by Senthil et al [29] permits direct
second-order quantum phase transitions between such states
with different forms of broken symmetry. In their scenario the
quantum critical points still separate phases characterized by
order parameters of the conventional (i.e. in their language,
‘confining’) kind, but their proposed new critical theory
involves fractional degrees of freedom (namely, spinons for the
spin-1/2 J1–J2 model on the 2D square lattice) that interact
via an emergent gauge field. For the specific example of
the spin-1/2 J1–J2 model, the order parameters of both the
Néel and VBS phases discussed above are represented in
terms of the spinons, which themselves become ‘deconfined’
exactly at the critical point. That the spinons are the
fundamental constituents of both order parameters then offers a
natural explanation for the direct second-order phase transition
between two states of the system that otherwise seem very
different on the basis of their broken symmetries.

Despite the compelling nature of the arguments posited
by Senthil et al [29], we should mention, however, that other
authors believe the phase transition in the J1–J2 model not to
be due to a deconfinement of spinons. For example, Sirker
et al [9] have given arguments, based both on numerical results
from series expansion analyses and on spin-wave theory, that
the spin-1/2 J1–J2 transition is not of the above second-order
deconfined type but, in their view, is more likely to be a
(weakly) first-order transition between the Néel phase and a
VBS phase with columnar dimerization.

One should also note that other, less radical, mechanisms
have also been proposed to explain such second-order
phase transitions and their seeming disagreement (except by
accidental fine-tuning) with Ginzburg–Landau theory. What
seems clearly to be minimally required is that the order
parameters of the two phases with different broken symmetry
should be related in some way. Thus, a Ginzburg–Landau-type
theory can only be preserved if it contains additional terms in
the effective theory that represent interactions between the two
order parameters. For example, just such an effective theory
has been proposed for the 2D spin-1/2 J1–J2 model on the
square lattice by Sushkov et al [30], and further discussed
in [9].

Whether or not the deconfined phase transition theory
of Senthil et al [29] survives the controversy that still
surrounds it, we note that one of the motivations that led to
it was the existence of various other numerical calculations
in recent years that also point to a direct second-order
quantum phase transition between phases of different broken
symmetry that are characterized by seemingly independent
order parameters. Examples include the quantum phase
transitions between: (i) an antiferromagnetic Mott insulator
and a dx2−y2 superconductor in a 2D Hubbard model on
a square lattice, based on quantum Monte Carlo (QMC)
simulations on lattices up to size 16 × 16 [31]; and (ii)
superfluid and stripe-order phases in a 2D square lattice
spin-1/2 XY model with both a nearest-neighbour coupling
term (J ) and a four-spin ring exchange term (K ), based
on a QMC method (namely, a stochastic series expansion
technique) with lattices up to size 64 × 64 [32]. While most
previous such numerical evidence for continuous (second-
order) quantum phase transitions between states with different
broken symmetry has come from QMC simulations, the well-
known ‘sign problem’ inherent to QMC techniques has meant
that it has not been easy to apply that method to frustrated spin–
lattice systems of the type considered here. We believe that the
use of the CCM for such systems, as reported here, opens up
a new arena and sheds a new spotlight on this fascinating and
still unresolved larger field.

Returning to our own results for the spin-1/2 J1–J ′
1–J2

model on the 2D square lattice, of course, one may also argue
that what we have observed as a continuous (second-order)
transition below the QTP may in reality be a very weak first-
order transition, which is thereby not in violation of the Landau
symmetry change criterion. Our completely independent
calculations for the two semiclassical phases can, obviously,
never entirely preclude this latter possibility. Nevertheless, it
is clear from our results (and see figures 2 and 4) that the data

5
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below the QTP are fully consistent only with a transition which
if it is not continuous is very weakly first-order for all values
0 � J ′

1 � 0.60 below the QTP.
Finally, one could also argue that in this same range

there might exist a very narrow strip of intermediate quantum
disordered phase, which would then reconcile our results (at
least qualitatively) with those from the exact diagonalization
of small clusters by Sindzingre [16]. While this possibility,
again, can never be entirely ruled out by any numerical
calculation such as ours, we have clearly demonstrated that
our own extrapolation schemes are both robust and internally
consistent enough to rule out any but an extremely narrow strip
of intermediate disordered phase for 0 � J ′

1 � 0.60.
We end by noting that two of the unique strengths

of the CCM are its ability to deal with highly frustrated
systems as easily as unfrustrated ones, and its use from the
outset of infinite lattices, which leads in turn to its ability to
yield accurate phase boundaries even near a possible QTP.
Our own results for the ground-state energy and staggered
magnetization provide a set of independent checks that lead
us to believe that we have a self-consistent and coherent
description of this extremely challenging system. We also
believe that the present high-order CCM results are among
the numerically most accurate for this and related spin–lattice
models containing frustration. Nevertheless, our suggested
novel phase scenario certainly needs further confirmation by
the application of alternative high-order methods. It would also
be of considerable interest to repeat the investigation for the
computationally more challenging case of the same system for
spin-1 particles, and we intend to report on this system in the
future.
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ed U Schollwöck, J Richter, D J J Farnell and
R F Bishop (Berlin: Springer) p 307

[22] Zeng C, Farnell D J J and Bishop R F 1998 J. Stat. Phys.
90 327
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